Laser-Therapy.US
Start New Query

Laser Phototherapy Clinical Practice and Scientific Background

Lars Hode and Jan Tunér - 2014 (Book)
This book is one of the most comprehensive resources for European style laser therapy.
View Resource

 This book covers an astonishing amount of information in its near thousand pages, everthing from basic laser physics to dental, and veteranary useage. Here are some of its contents:

  • Basic Laser Physics
    • physics
    • energy
    • radiation
    • wavelength and frequency
    • photon energy
    • the elecromagnetic spectrum
    • the optical reigon
    • radiation risks
    • can electromagnetic radiation cause cancer
    • protective mechanisms
    • light
    • the optical spectrum
    • light sources
    • various sources of radiation
    • natural sources of radiation
    • man-made light sources
    • the light emmiting diode (LED)
    • flash lamps
    • the laser
    • laser design
    • practical lasers
    • the properties of laser light coherence
    • interference
    • laser beam characteristics
    • polarisation
    • output power
    • continuous and pulsed lasers
    • the peak power value
    • average power output
    • power density
    • light distribution
    • beam divergence
    • collimation
    • risk of eye injury
    • decisive factors in the risk of eye injury
    • the laser instrument
    • properties of some laser types
    • description of common surgical laser types
    • the CO2 laser (carbon dioxide laser)
    • carbon dioxide lasers in surgery
    • carbon dioxide lasers in dental applications
    • the Nd:YAG laser
    • Nd:YAG lasers in surgery
    • Nd:YAG lasers in dentistry
    • erbium lasers in dentistry
    • "strong" diode lasers in dentistry
    • the KTP laser
    • Q-switching
  • Theraputic Lasers
    • the first generation 1975-85
    • the second generation 1985-95
    • the third generation 1995-2005
    • the fourth generation 2005 and onwards
    • what is a good laser therapy instrument
    • the basic instrument
    • sales tricks
    • high power-low power
    • laser or LED
    • high or low price
    • penetration of light into tissue
    • "a story of a young scientist"
    • the wavelength
    • how deep does light penetrate into tissue?
  • Biostimulation
    • history
    • a few words on mechanisms
    • photoreceptors
    • what parameters to use
    • laser parameters
    • whitch wavelength?
    • output power
    • average output power
    • power density
    • energy density
    • the dose
    • treatment dose
    • calculation of doses
    • dose ranges
    • calculation of treatment time for a desired dose
    • "reay reckoner"
    • dose per point
    • pulsed or continuous light
    • pulse repetition rate (PRP)
    • patient parameters
    • treatment area
    • treatment intervals
    • pre- or postoperative treatment
    • treatment method parameters
    • local treatment
    • shallow problems
    • deeper problems
    • treating inside the body
    • systemic treatments
    • acccupuncture
    • trigger points
    • spinal processes
    • dermatome
    • blood irradiation
    • irradiation of lymph nodes
    • irradiation of ganglions
    • combo treatment
    • interaction with medication
    • other considerations
    • what about collimation?
    • depth of penetration, greatest active depth
    • factors that reduce penetration
    • tissue compression
    • how deep does the light penetrate?
    • laser light irradiation through clothes
    • the importance of tissue and cell condition
    • the importance of ambient light
    • in vitro/ in vivo
    • laser therapy with high output lasers
    • laser therapy with carbon dioxide lasers
    • laser therapy with Nd:YAG lasers
    • laser therapy with ruby lasers
    • laser therapy with Er:YAG lasers
    • laser therapy with surgical diode lasers
    • risks and side effects
    • the importance of correct diagnose
    • cancer
    • cytogentic effects?
    • a false picture of health
    • tiredness
    • pain reaction
    • do high doses of laser therapy damage tissue?
    • is it only an effect of temperature?
    • protection against radiation injury
    • how to measure effects of laser therapy
    • thermography
    • magnetic resonance imaging
    • high resolution digitized ultrasound B-scan
    • tensile strength
    • other objective methods
    • does it have to be a laser?
    • FDA (Food and Drug Administration)
    • how well documented?
    • confused?
    • the funding research
    • as time goes by
  • Medical indications
    • who and what can be treated?
    • acne
    • allergy
    • antibiotic resistance
    • arteriosclerosis
    • arthritis
    • asthma
    • blood preservation
    • blood pressure
    • bone regeneration
    • burning mouth syndrome
    • cancer
    • cardiac conditions
    • carpal tunnel syndrome
    • cerebral palsy
    • crural and venous ulcers
    • delayed onset muscular soreness (DOMS)
    • depression, psychosomatic problems
    • diabetes
    • duodenal/gastric ulcer
    • epicondylitis
    • erythema multiform major
    • fibrositis/fribomyalgia
    • headache/migraine
    • heamorrhoids
    • herpes simplex
    • immune system modulation
    • inflammation
    • inner ear conditions
    • laryngitis
    • lichen
    • low back pain
    • mastitis
    • microcirculation
    • morbus sluder
    • mucositis
    • muscle regeneration
    • mycosis
    • nerve conduction
    • nerve regeneration and function
    • oedema
    • ophthalmic problems
    • pain
    • periostitis
    • plantar fasciitis
    • salivary glands
    • sinuitis
    • spinal cord injuries
    • snake bites
    • sports injuries
    • stem cells
    • stroke, irradiation of the brain
    • tendinopathies
    • tinnitus, vertigo, meniere's disease
    • tonsillitis
    • trigeminal neuralgia
    • thrombophlebitis
    • tuberculosis
    • urology
    • warts
    • wiplash-assosiated dissorders
    • vitiligo
    • womens' health
    • wound healing
    • zoster
    • idications in the pipeline
    • alzheimer's disease
    • botox failures
    • cellulites
    • cholesterol reduction
    • complex reigonal pain syndrom (CRPS)
    • eczema
    • erectile dysfunction
    • familiar amyotrophic lateral sclerosis (FALS)
    • glomerulonephritis
    • obesity
    • orofacial granulomatosis
    • Parkinson's disease
    • post-mestrual stress
    • pemphigus vulgaris
    • sleeping disorders
    • withdrawal periods
    • wrinkles
    • consumer lasers
  • Dental LPT
    • the dental laser literature
    • on which patients can LPT be used?
    • dental indications
    • alveolitis
    • anaesthetics
    • aphthae
    • bleeding
    • bisphosphonate related osteonecrosis of the jaw
    • caries
    • dentitio dificilis (pericoronitis)
    • endodontics
    • extraction
    • gingivitus
    • herpes zoster
    • hypersensitive dentine
    • implantology
    • leukoplakia
    • lingua geographica (glossitis)
    • lip wounds
    • nausea
    • nerve injury
    • orthodontics
    • mild dental pain
    • paediatric dental treatment
    • periodontics
    • prosthetics
    • root fractures
    • secondary dentine formations
    • temperature caveats
    • toemporo-mandibular disorders (TMD)
    • TMD and endodontics
    • other dental laser applications
    • dental pohoto dynamic therapy
    • composite curing
    • deminerallisation
    • tooth bleaching
    • caries detection
    • lasers as a diagnostic tool
    • case reports
  • Non Coherent Light Sources
  • Veterinary Use
    • case reports
  • Contra Idications
    • pacemakers
    • pregnancy
    • epilepsy
    • thyroid gland
    • children
    • cancer
    • haemophilia
    • irradiation of the brain
    • radiation therapy patients
    • diabetes
    • tatoos
    • light sensitivity
  • Coherence
    • the role of coherence in laser phototherapy
    • itroduction
    • summary
  • Dose and Intensity
    • basics about energy
    • output power
    • power density
    • the laser beam
    • the laser probe
    • pulsed lasers
    • energy density
    • treatment dose
    • the dose does not demend on the intensity
    • dose per point
    • more about treatment technique
  • The Mechanisms
    • are biostimulative effects laser specific?
    • is it possible to prove that laser therapy doesn't work?
    • comparisons between coherent and non-coherent light
    • what is the importance of the length of coherence
    • hode's hamburger
    • hode's big burger
    • abrahamson's apple
    • moonlight
    • how deep does light penetrate tissue?
    • bright light phototherapy
    • similarities and differences
    • possible primary mechanisms
    • polarisation effects
    • what characterises the light in a laser speckle
    • porphyrins and polarised light
    • cell cultures and tissue have different optical properties
    • tthe effect of heat development in the tissue
    • macroscopic heating
    • the microscopic heat effect
    • mechanical forces
    • excitation effects
    • primary reactions due to excitation
    • secondary reactions due to cell signaling
    • flourescence-luminescence
    • multi-photon effects
    • llasting effects in tissue
    • non-linear optical effects
    • opto-acoustic waves
    • secondary mechanisms
    • effects on pain
    • effects on blood circulation
    • stimulatory and regulatory mechanisms
    • effects on the immune system
    • other interesting possibilities
    • summary of mechanisms
    • diagnostics with therapeutic lasers
    • photodynamic therapy - PDT
    • other medical uses of lasers
  • A Guide for Scientific Work
    • methodology of a trial
    • parameters
    • technical parameters
    • treatment parameters
    • medical parameters
    • closer description of the technical parameters
    • name of instrument (producer)
    • laser type and wavelength
    • laser beam characteristics
    • number of sources
    • beam delivery system
    • output power
    • power density at probe aperture
    • calibration of the instrument
    • closer description of the treatment parameters
    • treatment area
    • dose: energy density
    • dose per treatment and total dose
    • intensity: power density
    • treatment method
    • treatment distance (spot size), type of movement, scanning
    • sites of treatment
    • number of treatment sessions
    • frequency of treatment sessions
    • closer description of the medical parameters
    • description of the problem to be treated
    • patients (number, age, sex)
    • exclusion criteria
    • inclusion criteria
    • condition of patient
    • pre-, parallel-, or post-medication
    • treated with other methods before
    • drop-out rates
    • follow up
    • outcome measures
    • statistical analysis
    • economy
    • gallium-alluminium and all that
    • recommendations of WALT - the world assosiation for laser therapy
  • The Laser Phototherapy Literature
    • the importance of reporting all laser parameters - even in the abstract
    • diclofenac, dexamethasone or laser phototherapy?
    • another pithole in LPT research
    • database of abstracts of reviews of effects (DARE)
    • the wound healing contradiction
    • wikipedia
    • poor documentation - compared to what?
    • LPT equipment and the future
    • english language books od LPT:
    • books in other languages, with ISBN
    • laser phototherapy journals
    • information for your patient

Original Source: http://www.coldlasers.org/lllt-books/

Evaluation of low intensity laser effects on the thyroid gland of male mice.

Azevedo LH1, Aranha AC, Stolf SF, Eduardo Cde P, Vieira MM. - Photomed Laser Surg. 2005 Dec;23(6):567-70. (Publication)
Using 4j/cm, a statistically significant hormonal level alteration between the first day and 7 days after the last irradiation was found.
View Resource
Intro: The purpose of this study was to assess whether there were alterations in the thyroid hormone plasma levels under infrared laser irradiation, in the thyroid gland region.

Background: The purpose of this study was to assess whether there were alterations in the thyroid hormone plasma levels under infrared laser irradiation, in the thyroid gland region.

Abstract: Abstract OBJECTIVE: The purpose of this study was to assess whether there were alterations in the thyroid hormone plasma levels under infrared laser irradiation, in the thyroid gland region. BACKGROUND DATA: Studies have demonstrated that infrared laser can cause alterations in thyroid glands. METHODS: Sixty-five albino male mice were used and assigned to five groups (n = 13), with differences in the times that they were sacrificed. Irradiation procedures consisted of an infrared diode laser emitting at 780 nm, at 4 J/cm(2) energy density, in contact mode, point manner. Blood was collected before irradiation (group 1), and then at 24 h (group 2), 48 h (group 3) and 72 h (group 4), and 1 week (group 5) after the third irradiation. The collected material was used for clinical analysis to evaluate the T(3) (triiodothyronine) and T(4) (thyroxin) hormones. Five animals were used for light microscopy analysis. RESULTS: A statistically significant hormonal level alteration between the first day and 7 days after the last irradiation was found. CONCLUSIONS: It was concluded that low-level laser therapy (LLLT) of the thyroid gland may affect the level of thyroidal hormones.

Methods: Studies have demonstrated that infrared laser can cause alterations in thyroid glands.

Results: Sixty-five albino male mice were used and assigned to five groups (n = 13), with differences in the times that they were sacrificed. Irradiation procedures consisted of an infrared diode laser emitting at 780 nm, at 4 J/cm(2) energy density, in contact mode, point manner. Blood was collected before irradiation (group 1), and then at 24 h (group 2), 48 h (group 3) and 72 h (group 4), and 1 week (group 5) after the third irradiation. The collected material was used for clinical analysis to evaluate the T(3) (triiodothyronine) and T(4) (thyroxin) hormones. Five animals were used for light microscopy analysis.

Conclusions: A statistically significant hormonal level alteration between the first day and 7 days after the last irradiation was found.

Original Source: http://www.ncbi.nlm.nih.gov/pubmed/16356148

Phototherapeutic Effect of Low-Level Laser on Thyroid Gland of Gamma-Irradiated Rats.

Morcos N1, Omran M2, Ghanem H1, Elahdal M3, Kamel N2, Attia E2. - Photochem Photobiol. 2015 Jul-Aug;91(4):942-51. doi: 10.1111/php.12465. Epub 2015 Jun 4. ()
View Resource
Intro: One inescapable feature of life on the earth is exposure to ionizing radiation. The thyroid gland is one of the most sensitive organs to gamma-radiation and endocrine disrupters. Low-level laser therapy (LLLT) has been used to stimulate tissue repair, and reduce inflammation. The aim of this study was to gauge the value of using Helium-Neon laser to repair the damaged tissues of thyroid gland after gamma-irradiation. Albino rats were used in this study (144 rats), divided into control, gamma, laser, and gamma plus laser-irradiated groups, each group was divided into six subgroups according to time of treatment (total six sessions). Rats were irradiated once with gamma radiation (6 Gy), and an external dose of laser (Wavelength 632.8 nm, 12 mW, CW, Illuminated area 5.73 cm(2), 2.1 mW cm(-2) 120 s, 1.4 J, 0.252 J cm(-2)) twice weekly localized on thyroid region of the neck, for a total of six sessions. Animals were sacrificed after each session. Analysis included thyroid function, oxidative stress markers, liver function and blood picture. Results revealed improvement in thyroid function, liver function and antioxidant levels, and the blood cells count after LLLT.

Background: One inescapable feature of life on the earth is exposure to ionizing radiation. The thyroid gland is one of the most sensitive organs to gamma-radiation and endocrine disrupters. Low-level laser therapy (LLLT) has been used to stimulate tissue repair, and reduce inflammation. The aim of this study was to gauge the value of using Helium-Neon laser to repair the damaged tissues of thyroid gland after gamma-irradiation. Albino rats were used in this study (144 rats), divided into control, gamma, laser, and gamma plus laser-irradiated groups, each group was divided into six subgroups according to time of treatment (total six sessions). Rats were irradiated once with gamma radiation (6 Gy), and an external dose of laser (Wavelength 632.8 nm, 12 mW, CW, Illuminated area 5.73 cm(2), 2.1 mW cm(-2) 120 s, 1.4 J, 0.252 J cm(-2)) twice weekly localized on thyroid region of the neck, for a total of six sessions. Animals were sacrificed after each session. Analysis included thyroid function, oxidative stress markers, liver function and blood picture. Results revealed improvement in thyroid function, liver function and antioxidant levels, and the blood cells count after LLLT.

Abstract: Abstract One inescapable feature of life on the earth is exposure to ionizing radiation. The thyroid gland is one of the most sensitive organs to gamma-radiation and endocrine disrupters. Low-level laser therapy (LLLT) has been used to stimulate tissue repair, and reduce inflammation. The aim of this study was to gauge the value of using Helium-Neon laser to repair the damaged tissues of thyroid gland after gamma-irradiation. Albino rats were used in this study (144 rats), divided into control, gamma, laser, and gamma plus laser-irradiated groups, each group was divided into six subgroups according to time of treatment (total six sessions). Rats were irradiated once with gamma radiation (6 Gy), and an external dose of laser (Wavelength 632.8 nm, 12 mW, CW, Illuminated area 5.73 cm(2), 2.1 mW cm(-2) 120 s, 1.4 J, 0.252 J cm(-2)) twice weekly localized on thyroid region of the neck, for a total of six sessions. Animals were sacrificed after each session. Analysis included thyroid function, oxidative stress markers, liver function and blood picture. Results revealed improvement in thyroid function, liver function and antioxidant levels, and the blood cells count after LLLT. © 2015 The American Society of Photobiology.

Methods: © 2015 The American Society of Photobiology.

Original Source: http://www.ncbi.nlm.nih.gov/pubmed/25975382

Effect of three different protocols of low-level laser therapy on thyroid hormone production after dental implant placement in an experimental rabbit model.

Weber JB1, Mayer L, Cenci RA, Baraldi CE, Ponzoni D, Gerhardt de Oliveira M. - Photomed Laser Surg. 2014 Nov;32(11):612-7. doi: 10.1089/pho.2014.3756. Epub 2014 Sep 29. ()
View Resource
Intro: The purpose of this study was to assess the systemic effects of low-level laser therapy (LLLT) on thyroid gland function and, consequently, calcium regulation - as measured by serum triiodothyronine (T3), thyroxine (T4), and free calcium levels - when administered after dental implant placement in a rabbit model.

Background: The purpose of this study was to assess the systemic effects of low-level laser therapy (LLLT) on thyroid gland function and, consequently, calcium regulation - as measured by serum triiodothyronine (T3), thyroxine (T4), and free calcium levels - when administered after dental implant placement in a rabbit model.

Abstract: Abstract OBJECTIVE: The purpose of this study was to assess the systemic effects of low-level laser therapy (LLLT) on thyroid gland function and, consequently, calcium regulation - as measured by serum triiodothyronine (T3), thyroxine (T4), and free calcium levels - when administered after dental implant placement in a rabbit model. BACKGROUND DATA: Protocols for the use of laser therapy in several clinical procedures are currently under investigation, as not all of the actions and systemic effects of laser irradiation have been clearly established. MATERIALS AND METHODS: Forty male adult New Zealand rabbits were distributed across five groups of eight animals each: two control groups (C-I and C-II) of unirradiated animals, and three experimental groups (E-5, E-10, and E-20), each exposed to a distinct dose of gallium-aluminum-arsenide (GaAlAs) laser [λ=830 nm, 50 mW, continuous wave (CW)] every 48 h for a total of seven sessions. The total dose per session was 5 J/cm(2) in E-5, 10 J/cm(2) in E-10, and 20 J/cm(2) in E-20. Animals in C-II and all experimental groups underwent surgical extraction of the mandibular left incisor followed by immediate placement of an osseointegrated implant (Nanotite(®), Biomet 3i(™)) into the socket. Animals in group C-I served as an absolute control for T3, T4, and calcium measurements. The level of significance was set at 5% (p≤0.05). RESULTS: ANOVA with Tukey's post-hoc test revealed significant differences in T3 and calcium levels among experimental groups, as well as significant within-group differences in T3, T4, and calcium levels over time. CONCLUSIONS: Although not reaching abnormal values, LLLT applied to the mandible influenced thyroid function in this model.

Methods: Protocols for the use of laser therapy in several clinical procedures are currently under investigation, as not all of the actions and systemic effects of laser irradiation have been clearly established.

Results: Forty male adult New Zealand rabbits were distributed across five groups of eight animals each: two control groups (C-I and C-II) of unirradiated animals, and three experimental groups (E-5, E-10, and E-20), each exposed to a distinct dose of gallium-aluminum-arsenide (GaAlAs) laser [λ=830 nm, 50 mW, continuous wave (CW)] every 48 h for a total of seven sessions. The total dose per session was 5 J/cm(2) in E-5, 10 J/cm(2) in E-10, and 20 J/cm(2) in E-20. Animals in C-II and all experimental groups underwent surgical extraction of the mandibular left incisor followed by immediate placement of an osseointegrated implant (Nanotite(®), Biomet 3i(™)) into the socket. Animals in group C-I served as an absolute control for T3, T4, and calcium measurements. The level of significance was set at 5% (p≤0.05).

Conclusions: ANOVA with Tukey's post-hoc test revealed significant differences in T3 and calcium levels among experimental groups, as well as significant within-group differences in T3, T4, and calcium levels over time.

Original Source: http://www.ncbi.nlm.nih.gov/pubmed/25265487

Assessment of the systemic effects of low-level laser therapy (LLLT) on thyroid hormone function in a rabbit model.

Fronza B1, Somacal T, Mayer L, de Moraes JF, de Oliveira MG, Weber JB. - Int J Oral Maxillofac Surg. 2013 Jan;42(1):26-30. doi: 10.1016/j.ijom.2012.06.017. Epub 2012 Jul 21. ()
View Resource
Intro: The aim of this study was to assess the effects of low-level laser therapy (LLLT) applied to a dental extraction socket on thyroid gland function in a rabbit model, based on serum triiodothyronine and thyroxine levels. Sixteen male New Zealand rabbits were randomly distributed into two groups: a control group (non-irradiated animals) and an experimental group (irradiated animals: one irradiation point in the extraction socket of the lower incisor). Animals in the experimental group were irradiated with an aluminium gallium arsenide diode laser (AlGaAs; wavelength 830 nm, 40 mW, CW laser), for 13 days, every 48 h, at a dose of 6 J/cm(2) per session, resulting in a total dose of 42 J/cm(2). Serum triiodothyronine and thyroxine levels were measured in both groups before extraction and on the last day of observation (day 15). There were no statistically significant differences between the groups in pre- and post-irradiation triiodothyronine and thyroxine values. With the irradiation protocol used in this study, LLLT did not affect thyroid function in rabbits as assessed by circulating serum triiodothyronine and thyroxine levels.

Background: The aim of this study was to assess the effects of low-level laser therapy (LLLT) applied to a dental extraction socket on thyroid gland function in a rabbit model, based on serum triiodothyronine and thyroxine levels. Sixteen male New Zealand rabbits were randomly distributed into two groups: a control group (non-irradiated animals) and an experimental group (irradiated animals: one irradiation point in the extraction socket of the lower incisor). Animals in the experimental group were irradiated with an aluminium gallium arsenide diode laser (AlGaAs; wavelength 830 nm, 40 mW, CW laser), for 13 days, every 48 h, at a dose of 6 J/cm(2) per session, resulting in a total dose of 42 J/cm(2). Serum triiodothyronine and thyroxine levels were measured in both groups before extraction and on the last day of observation (day 15). There were no statistically significant differences between the groups in pre- and post-irradiation triiodothyronine and thyroxine values. With the irradiation protocol used in this study, LLLT did not affect thyroid function in rabbits as assessed by circulating serum triiodothyronine and thyroxine levels.

Abstract: Abstract The aim of this study was to assess the effects of low-level laser therapy (LLLT) applied to a dental extraction socket on thyroid gland function in a rabbit model, based on serum triiodothyronine and thyroxine levels. Sixteen male New Zealand rabbits were randomly distributed into two groups: a control group (non-irradiated animals) and an experimental group (irradiated animals: one irradiation point in the extraction socket of the lower incisor). Animals in the experimental group were irradiated with an aluminium gallium arsenide diode laser (AlGaAs; wavelength 830 nm, 40 mW, CW laser), for 13 days, every 48 h, at a dose of 6 J/cm(2) per session, resulting in a total dose of 42 J/cm(2). Serum triiodothyronine and thyroxine levels were measured in both groups before extraction and on the last day of observation (day 15). There were no statistically significant differences between the groups in pre- and post-irradiation triiodothyronine and thyroxine values. With the irradiation protocol used in this study, LLLT did not affect thyroid function in rabbits as assessed by circulating serum triiodothyronine and thyroxine levels. Copyright © 2012 International Association of Oral and Maxillofacial Surgeons. Published by Elsevier Ltd. All rights reserved.

Methods: Copyright © 2012 International Association of Oral and Maxillofacial Surgeons. Published by Elsevier Ltd. All rights reserved.

Original Source: http://www.ncbi.nlm.nih.gov/pubmed/22819694

Low-level laser in the treatment of patients with hypothyroidism induced by chronic autoimmune thyroiditis: a randomized, placebo-controlled clinical trial.

Höfling DB1, Chavantes MC, Juliano AG, Cerri GG, Knobel M, Yoshimura EM, Chammas MC. - Lasers Med Sci. 2013 May;28(3):743-53. doi: 10.1007/s10103-012-1129-9. Epub 2012 Jun 21. (Publication)
These findings suggest that LLLT was effective at improving thyroid function, promoting reduced TPOAb-mediated autoimmunity and increasing thyroid echogenicity in patients with CAT hypothyroidism.
View Resource
Intro: Chronic autoimmune thyroiditis (CAT) is the most common cause of acquired hypothyroidism, which requires lifelong levothyroxine replacement therapy. Currently, no effective therapy is available for CAT. Thus, the objective of this study was to evaluate the efficacy of low-level laser therapy (LLLT) in patients with CAT-induced hypothyroidism by testing thyroid function, thyroid peroxidase antibodies (TPOAb), thyroglobulin antibodies (TgAb), and ultrasonographic echogenicity. A randomized, placebo-controlled trial with a 9-month follow-up was conducted from 2006 to 2009. Forty-three patients with a history of levothyroxine therapy for CAT-induced hypothyroidism were randomly assigned to receive either 10 sessions of LLLT (830 nm, output power of 50 mW, and fluence of 707 J/cm(2); L group, n=23) or 10 sessions of a placebo treatment (P group, n=20). The levothyroxine was suspended 30 days after the LLLT or placebo procedures. Thyroid function was estimated by the levothyroxine dose required to achieve normal concentrations of T3, T4, free-T4 (fT4), and thyrotropin after 9 months of postlevothyroxine withdrawal. Autoimmunity was assessed by measuring the TPOAb and TgAb levels. A quantitative computerized echogenicity analysis was performed pre- and 30 days postintervention. The results showed a significant difference in the mean levothyroxine dose required to treat the hypothyroidism between the L group (38.59 ± 20.22 μg/day) and the P group (106.88 ± 22.90 μg/day, P<0.001). Lower TPOAb (P=0.043) and greater echogenicity (P<0.001) were also noted in the L group. No TgAb difference was observed. These findings suggest that LLLT was effective at improving thyroid function, promoting reduced TPOAb-mediated autoimmunity and increasing thyroid echogenicity in patients with CAT hypothyroidism.

Background: Chronic autoimmune thyroiditis (CAT) is the most common cause of acquired hypothyroidism, which requires lifelong levothyroxine replacement therapy. Currently, no effective therapy is available for CAT. Thus, the objective of this study was to evaluate the efficacy of low-level laser therapy (LLLT) in patients with CAT-induced hypothyroidism by testing thyroid function, thyroid peroxidase antibodies (TPOAb), thyroglobulin antibodies (TgAb), and ultrasonographic echogenicity. A randomized, placebo-controlled trial with a 9-month follow-up was conducted from 2006 to 2009. Forty-three patients with a history of levothyroxine therapy for CAT-induced hypothyroidism were randomly assigned to receive either 10 sessions of LLLT (830 nm, output power of 50 mW, and fluence of 707 J/cm(2); L group, n=23) or 10 sessions of a placebo treatment (P group, n=20). The levothyroxine was suspended 30 days after the LLLT or placebo procedures. Thyroid function was estimated by the levothyroxine dose required to achieve normal concentrations of T3, T4, free-T4 (fT4), and thyrotropin after 9 months of postlevothyroxine withdrawal. Autoimmunity was assessed by measuring the TPOAb and TgAb levels. A quantitative computerized echogenicity analysis was performed pre- and 30 days postintervention. The results showed a significant difference in the mean levothyroxine dose required to treat the hypothyroidism between the L group (38.59 ± 20.22 μg/day) and the P group (106.88 ± 22.90 μg/day, P<0.001). Lower TPOAb (P=0.043) and greater echogenicity (P<0.001) were also noted in the L group. No TgAb difference was observed. These findings suggest that LLLT was effective at improving thyroid function, promoting reduced TPOAb-mediated autoimmunity and increasing thyroid echogenicity in patients with CAT hypothyroidism.

Abstract: Abstract Chronic autoimmune thyroiditis (CAT) is the most common cause of acquired hypothyroidism, which requires lifelong levothyroxine replacement therapy. Currently, no effective therapy is available for CAT. Thus, the objective of this study was to evaluate the efficacy of low-level laser therapy (LLLT) in patients with CAT-induced hypothyroidism by testing thyroid function, thyroid peroxidase antibodies (TPOAb), thyroglobulin antibodies (TgAb), and ultrasonographic echogenicity. A randomized, placebo-controlled trial with a 9-month follow-up was conducted from 2006 to 2009. Forty-three patients with a history of levothyroxine therapy for CAT-induced hypothyroidism were randomly assigned to receive either 10 sessions of LLLT (830 nm, output power of 50 mW, and fluence of 707 J/cm(2); L group, n=23) or 10 sessions of a placebo treatment (P group, n=20). The levothyroxine was suspended 30 days after the LLLT or placebo procedures. Thyroid function was estimated by the levothyroxine dose required to achieve normal concentrations of T3, T4, free-T4 (fT4), and thyrotropin after 9 months of postlevothyroxine withdrawal. Autoimmunity was assessed by measuring the TPOAb and TgAb levels. A quantitative computerized echogenicity analysis was performed pre- and 30 days postintervention. The results showed a significant difference in the mean levothyroxine dose required to treat the hypothyroidism between the L group (38.59 ± 20.22 μg/day) and the P group (106.88 ± 22.90 μg/day, P<0.001). Lower TPOAb (P=0.043) and greater echogenicity (P<0.001) were also noted in the L group. No TgAb difference was observed. These findings suggest that LLLT was effective at improving thyroid function, promoting reduced TPOAb-mediated autoimmunity and increasing thyroid echogenicity in patients with CAT hypothyroidism.

Original Source: http://www.ncbi.nlm.nih.gov/pubmed/22718472

[The influence of pulsed infrared laser radiation on the hormone production in the thymus (an experimental study)].

[Article in Russian] - Vopr Kurortol Fizioter Lech Fiz Kult. 2011 Jul-Aug;(4):39-42. ()
View Resource
Intro: Local irradiation with pulsed (1500 Hz) low-energy infrared laser light of the thymus and thyroid gland region caused well-apparent stimulation of alpha-1-thymosin production in the healthy animals and normalized its level in the stressed ones. Similar stimulation of alpha-1-timosine biosynthesis was observed in an experiment with direct laser irradiation of the cultured HTSC epitheliocytes from the human thymus.

Background: Local irradiation with pulsed (1500 Hz) low-energy infrared laser light of the thymus and thyroid gland region caused well-apparent stimulation of alpha-1-thymosin production in the healthy animals and normalized its level in the stressed ones. Similar stimulation of alpha-1-timosine biosynthesis was observed in an experiment with direct laser irradiation of the cultured HTSC epitheliocytes from the human thymus.

Abstract: Abstract Local irradiation with pulsed (1500 Hz) low-energy infrared laser light of the thymus and thyroid gland region caused well-apparent stimulation of alpha-1-thymosin production in the healthy animals and normalized its level in the stressed ones. Similar stimulation of alpha-1-timosine biosynthesis was observed in an experiment with direct laser irradiation of the cultured HTSC epitheliocytes from the human thymus.

Original Source: http://www.ncbi.nlm.nih.gov/pubmed/21988030

Low-level laser therapy in chronic autoimmune thyroiditis: a pilot study.

Höfling DB1, Chavantes MC, Juliano AG, Cerri GG, Romão R, Yoshimura EM, Chammas MC. - Lasers Surg Med. 2010 Aug;42(6):589-96. doi: 10.1002/lsm.20941. ()
View Resource
Intro: Chronic autoimmune thyroiditis (CAT) remains the most common cause of acquired hypothyroidism. There is currently no therapy that is capable of regenerating CAT-damaged thyroid tissue. The objective of this study was to gauge the value of applying low-level laser therapy (LLLT) in CAT patients based on both ultrasound studies (USs) and evaluations of thyroid function and thyroid autoantibodies.

Background: Chronic autoimmune thyroiditis (CAT) remains the most common cause of acquired hypothyroidism. There is currently no therapy that is capable of regenerating CAT-damaged thyroid tissue. The objective of this study was to gauge the value of applying low-level laser therapy (LLLT) in CAT patients based on both ultrasound studies (USs) and evaluations of thyroid function and thyroid autoantibodies.

Abstract: Abstract BACKGROUND AND OBJECTIVES: Chronic autoimmune thyroiditis (CAT) remains the most common cause of acquired hypothyroidism. There is currently no therapy that is capable of regenerating CAT-damaged thyroid tissue. The objective of this study was to gauge the value of applying low-level laser therapy (LLLT) in CAT patients based on both ultrasound studies (USs) and evaluations of thyroid function and thyroid autoantibodies. STUDY DESIGN/MATERIALS AND METHODS: Fifteen patients who had hypothyroidism caused by CAT and were undergoing levothyroxine (LT4) treatment were selected to participate in the study. Patients received 10 applications of LLLT (830 nm, output power 50 mW) in continuous mode, twice a week, using either the punctual technique (8 patients) or the sweep technique (7 patients), with fluence in the range of 38-108 J/cm(2). USs were performed prior to and 30 days after LLLT. USs included a quantitative analysis of echogenicity through a gray-scale computerized histogram index (EI). Following the second ultrasound (30 days after LLLT), LT4 was discontinued in all patients and, if required, reintroduced. Triiodothyronine, thyroxine (T4), free T4, thyrotropin, thyroid peroxidase (TPOAb) and thyroglobulin (TgAb) antibodies levels were assessed before LLLT and then 1, 2, 3, 6, and 9 months after LT4 withdrawal. RESULTS: We noted all patients' reduced LT4 dosage needs, including 7 (47%) who did not require any LT4 through the 9-month follow-up. The LT4 dosage used pre-LLLT (96 +/- 22 microg/day) decreased in the 9th month of follow-up (38 +/- 23 microg/day; P < 0.0001). TPOAb levels also decreased (pre-LLLT = 982 +/- 530 U/ml, post-LLLT = 579 +/- 454 U/ml; P = 0.016). TgAb levels were not reduced, though we did observe a post-LLLT increase in the EI (pre-LLLT = 0.99 +/- 0.09, post-LLLT = 1.21 +/- 0.19; P = 0.001). CONCLUSION: The preliminary results indicate that LLLT promotes the improvement of thyroid function, as patients experienced a decreased need for LT4, a reduction in TPOAb levels, and an increase in parenchymal echogenicity. (c) 2010 Wiley-Liss, Inc.

Methods: Fifteen patients who had hypothyroidism caused by CAT and were undergoing levothyroxine (LT4) treatment were selected to participate in the study. Patients received 10 applications of LLLT (830 nm, output power 50 mW) in continuous mode, twice a week, using either the punctual technique (8 patients) or the sweep technique (7 patients), with fluence in the range of 38-108 J/cm(2). USs were performed prior to and 30 days after LLLT. USs included a quantitative analysis of echogenicity through a gray-scale computerized histogram index (EI). Following the second ultrasound (30 days after LLLT), LT4 was discontinued in all patients and, if required, reintroduced. Triiodothyronine, thyroxine (T4), free T4, thyrotropin, thyroid peroxidase (TPOAb) and thyroglobulin (TgAb) antibodies levels were assessed before LLLT and then 1, 2, 3, 6, and 9 months after LT4 withdrawal.

Results: We noted all patients' reduced LT4 dosage needs, including 7 (47%) who did not require any LT4 through the 9-month follow-up. The LT4 dosage used pre-LLLT (96 +/- 22 microg/day) decreased in the 9th month of follow-up (38 +/- 23 microg/day; P < 0.0001). TPOAb levels also decreased (pre-LLLT = 982 +/- 530 U/ml, post-LLLT = 579 +/- 454 U/ml; P = 0.016). TgAb levels were not reduced, though we did observe a post-LLLT increase in the EI (pre-LLLT = 0.99 +/- 0.09, post-LLLT = 1.21 +/- 0.19; P = 0.001).

Conclusions: The preliminary results indicate that LLLT promotes the improvement of thyroid function, as patients experienced a decreased need for LT4, a reduction in TPOAb levels, and an increase in parenchymal echogenicity.

Original Source: http://www.ncbi.nlm.nih.gov/pubmed/20662037

Beneficial effect of combined aspiration and interstitial laser therapy in patients with benign cystic thyroid nodules: a pilot study.

Døssing H1, Bennedbaek FN, Hegedüs L. - Br J Radiol. 2006 Dec;79(948):943-7. Epub 2006 Jul 5. ()
View Resource
Intro: The aim of this study was to evaluate the effect of combined cyst aspiration and ultrasound-guided interstitial laser photocoagulation (ILP) on recurrence rate and the volume of benign cystic thyroid nodules. 10 euthyroid outpatients with a solitary and cytologically benign partially cystic thyroid nodule causing local discomfort were assigned to cyst aspiration followed by ultrasound-guided ILP and followed for 12 months. The ILP was performed under continuous ultrasound-guidance and with an output power of 2.5-3.5 W. The volume of the nodules was assessed by means of ultrasound and determination of the amount of aspirated cyst fluid, thereby calculating the volume of the solid part. Follow-up included ultrasound and determination of thyroid function. Pressure and cosmetic complaints were evaluated on a visual analogue scale. The median initial volume of the cystic nodule decreased from 9.6 ml [6.8;15.5 (quartiles)] to 3.5 ml [2.7;9.0 (quartiles)] (p = 0.0001), and the median cyst volume from 3.0 ml [2.0;6.0 (quartiles)] to 0 ml [0;0.5 (quartiles)] (p = 0.0001) during follow-up. Recurrence of the cystic part was defined as a cyst volume > 1 ml. In eight of 10 patients there was no recurrence of the cystic part. Both pressure symptoms and cosmetic complaints were significantly reduced. The only side effect was mild pain or tenderness for a few days. Our study suggests that complete cyst aspiration and subsequent ultrasound-guided ILP of benign cystic thyroid nodules is a feasible and safe technique, resulting in a significant reduction in the volume of both the solid and the cystic component. A large-scale prospective randomized study is warranted.

Background: The aim of this study was to evaluate the effect of combined cyst aspiration and ultrasound-guided interstitial laser photocoagulation (ILP) on recurrence rate and the volume of benign cystic thyroid nodules. 10 euthyroid outpatients with a solitary and cytologically benign partially cystic thyroid nodule causing local discomfort were assigned to cyst aspiration followed by ultrasound-guided ILP and followed for 12 months. The ILP was performed under continuous ultrasound-guidance and with an output power of 2.5-3.5 W. The volume of the nodules was assessed by means of ultrasound and determination of the amount of aspirated cyst fluid, thereby calculating the volume of the solid part. Follow-up included ultrasound and determination of thyroid function. Pressure and cosmetic complaints were evaluated on a visual analogue scale. The median initial volume of the cystic nodule decreased from 9.6 ml [6.8;15.5 (quartiles)] to 3.5 ml [2.7;9.0 (quartiles)] (p = 0.0001), and the median cyst volume from 3.0 ml [2.0;6.0 (quartiles)] to 0 ml [0;0.5 (quartiles)] (p = 0.0001) during follow-up. Recurrence of the cystic part was defined as a cyst volume > 1 ml. In eight of 10 patients there was no recurrence of the cystic part. Both pressure symptoms and cosmetic complaints were significantly reduced. The only side effect was mild pain or tenderness for a few days. Our study suggests that complete cyst aspiration and subsequent ultrasound-guided ILP of benign cystic thyroid nodules is a feasible and safe technique, resulting in a significant reduction in the volume of both the solid and the cystic component. A large-scale prospective randomized study is warranted.

Abstract: Abstract The aim of this study was to evaluate the effect of combined cyst aspiration and ultrasound-guided interstitial laser photocoagulation (ILP) on recurrence rate and the volume of benign cystic thyroid nodules. 10 euthyroid outpatients with a solitary and cytologically benign partially cystic thyroid nodule causing local discomfort were assigned to cyst aspiration followed by ultrasound-guided ILP and followed for 12 months. The ILP was performed under continuous ultrasound-guidance and with an output power of 2.5-3.5 W. The volume of the nodules was assessed by means of ultrasound and determination of the amount of aspirated cyst fluid, thereby calculating the volume of the solid part. Follow-up included ultrasound and determination of thyroid function. Pressure and cosmetic complaints were evaluated on a visual analogue scale. The median initial volume of the cystic nodule decreased from 9.6 ml [6.8;15.5 (quartiles)] to 3.5 ml [2.7;9.0 (quartiles)] (p = 0.0001), and the median cyst volume from 3.0 ml [2.0;6.0 (quartiles)] to 0 ml [0;0.5 (quartiles)] (p = 0.0001) during follow-up. Recurrence of the cystic part was defined as a cyst volume > 1 ml. In eight of 10 patients there was no recurrence of the cystic part. Both pressure symptoms and cosmetic complaints were significantly reduced. The only side effect was mild pain or tenderness for a few days. Our study suggests that complete cyst aspiration and subsequent ultrasound-guided ILP of benign cystic thyroid nodules is a feasible and safe technique, resulting in a significant reduction in the volume of both the solid and the cystic component. A large-scale prospective randomized study is warranted.

Original Source: http://www.ncbi.nlm.nih.gov/pubmed/16822801

The query result(s) can be shared using the following direct link. Anyone who clicks on this link in an email or on a web site will be shown the current results for the query.
https://www.laser-therapy.us/research/index.cfm?researchinput=thyroid gland